ECS455 Chapter 2 Cellular Systems

2.4 Traffic Handling Capacity and Erlang B Formula

Dr.Prapun Suksompong prapun.com/ecs455 Office Hours: BKD 3601-7 Monday 9:20-10:20 Wednesday 9:20-10:20

Capacity Concept: A Revisit

- Q: If I have *m* channels per cell, is it true that my cell can support only *m* users?
- A:Yes and No
- Let's try one example.
- How often do you make a call? 3 calls day
- 3 calls a day, on average.
 How long is the call? user
 - $H = \frac{1}{\mu}$ • 10 mins (per call), on average. (average So, one person uses duration

$$3 \quad \frac{\text{calls}}{\text{day}} \times \frac{10 \text{ mins}}{\text{call}} = \frac{30 \text{ mins}}{\text{day}} = \frac{30 \text{ mins}}{24 \times 60 \text{ mins}} = \frac{1}{48} [\text{Erlang}]$$

$$(all initiation/request times (for user 1))$$

(average request rate)

Capacity Concept: A Revisit

- If we can "give" the time that "User 1" is idle to other users,
 - then one channel can support $\frac{1}{4q} = 48$ users!!

48x increase in capacity!

- True? (Not guike)
- -48 users is "possible" if we have a manipulate all 48 viers to not make calls when another vier is using the channel.
- Real users access the channel randomly.
 (call initiation/request times are random.)
 If we allow >1 users, then we (and the users) will have to deal with congestion.

New Concepts

- Using *m* as the capacity of a cell is too small.
- We can let more than one user share a channel by using it at different times.
- The number of users that a cell can support can then exceed *m*.
- Call initiation times are random
- **Blocked call** happens if a user requests to make a call when all the channels are occupied by other users.
- Probability of (call) blocking: P_b
 - The likelihood that a call is blocked because there is no available channel.
 - 1%, 2%, 5%

Trunking

- Allow a large number (*n*) of users to **share** the relatively small number of channels in a cell (or a sector) by providing access to each user, **on demand**, from a **pool** of available channels.
- Exploit the statistical behavior of users.
- Each user is allocated a channel on a per call basis, and upon termination of the call, the previously occupied channel is immediately returned to the pool of available channels.

Common Terms (1)

- Traffic Intensity: Measure of channel time utilization (traffic load / amount of traffic), which is the average channel occupancy measured in Erlangs.
 - Dimensionless • Denoted by A. • Denoted by A. • Denoted by A.
- Holding Time: Average duration of a typical call.
 - Denoted by $H = 1/\mu$. = 10 mins
- Request Rate: The average number of call requests per unit time. Denoted by λ . $\lambda_{\nu} = 3$ collipsion $\lambda = n \times \lambda_{\nu}$
- Use A_u and λ_u to denote the corresponding quantities for one user.
- Note that $A = nA_u$ and $\lambda = n\lambda_u$ where *n* is the number of users supported by the pool (trunked channels) under consideration.

$$A_{i} = \lambda_{i} \times H$$
$$A = \lambda \times H = \frac{\lambda}{2}$$

Common Terms (2)

- **Blocked Call**: Call which cannot be completed at time of request, due to congestion. Also referred to as a **lost call**.
- **Grade of Service (GOS)**: A measure of congestion which is specified as the probability of a call being blocked (for Erlang B).
 - The AMPS cellular system is designed for a GOS of 2% blocking. This implies that the channel allocations for cell sites are designed so that 2 out of 100 calls will be blocked due to channel occupancy during the busiest hour.

M/M/m/m Assumption

• Blocked calls cleared

- No queuing for call requests.
- For every user who requests service, there is no setup time and the user is given immediate access to a channel if one is available.
- If no channels are available, the requesting user is blocked without access and is free to try again later.
- Calls arrive as determined by a *Poisson process*.
- There are memoryless arrivals of requests, implying that all users, including blocked users, may request a channel at any time.
- There are an **infinite** number of users (with finite overall request rate).
 - The finite user results always predict a smaller likelihood of blocking. So, assuming infinite number of users provides a conservative estimate.
- The duration of the time that a user occupies a channel is *exponentially distributed*, so that longer calls are less likely to occur.
- There are *m* channels available in the trunking pool.
 - For us, m = the number of channels for a cell (C) or for a sector

Erlang B Formula and Chart

 $\sum_{i=0}^{\infty} \overline{i!}$

 A^m

m

т

 P_{b}

(log-log plot)

Example 1

0.005

• How many users can be supported for 0.5% blocking probability for the following number of trunked channels in a blocked calls cleared system?

(a) $5 = m \rightarrow A = 1.13 \Rightarrow n = 11.3 \approx 11$ users

(b) 10 = m → A = 3.96 ⇒ n = 39 wers.

• Assume each user generates $A_u = 0.1$ Erlangs of traffic.

For example,

$$6 \pm ines/day$$
 $7 \pm \frac{6}{2\pi \times 60} \times 24 = \frac{1}{10} \text{ Erlang.}$
 $average 24 \min s/call$

MATLAB

erlangb (m, A)

$\begin{array}{cccc} A & P_{b} \\ 1.1 & 0.0045 \\ 1.13 & 0.0050 \\ 1.14 & 0.0051 \\ 1.15 & 0.0053 \\ 1.2 & 0.0063. \end{array}$

Example 1a

Example 1b

 $A \approx 4 \Longrightarrow n \approx 40$ users

Example 2.1

- Consider a cellular system in which
 - an average call lasts two minutes $H = 2 \text{ mins} = \frac{1}{2}$
 - the probability of blocking is to be no more than 1%. $P_{b} \leq 0.01$
- If there are a total of 395 traffic channels for a seven-cell reuse system, there will be about 57 traffic channels per cell.
- From the Erlang B formula, can handle 44.2 Erlangs or 1326 calls per hour.

Example 2.1: Erlang B

Example 2.2

- Now employing 120° sectoring, there are only 19 channels per sector (57/3 antennas).
- For the same probability of blocking and average call length, each sector can handle 11.2 Erlangs or 336 calls per hour.
 33. C Erlangs
- Since each cell consists of three sectors, this provides a cell capacity of 3 × 336 = 1008 calls per hour, which amounts to a 24% decrease when compared to the unsectored case.
- Thus, sectoring decreases the **trunking efficiency** while improving the SIR for each user in the system.

Example 2.2: Erlang B

Erlang B Trunking Efficiency

 Table 3.4
 Capacity of an Erlang B System

Number of Channels m	= 0.01	Capacity (Erla = 0.005	ngs) for GOS = 0.002	0.1% = 0.001
2	0.153	0.105	0.065	0.046
4	0.869	0.701	0.535	0.439
5	1.36	1.13	0.900	0.762
$10 \rightarrow 2$	4.46	× > 2 ^{3.96}	3.43	3.09
20 %	12.0 🖌	11.1	10.1	9.41
24	15.3	14.2	13.0	12.2
40	29.0	27.3	25.7	24.5
70	56.1	53.7	51.0	49.2
100	84.1	80.9	77.4	75.2

[Rappaport, 2002, Table 3.4]

Example 3 (1)

- System Design
- 20 MHz of total spectrum.
- Each simplex channel has 25 kHz RF bandwidth.
- The number of duplex channels:

$$S = \frac{20 \times 10^6}{2 \times 25 \times 10^3} = 400 \text{ channels}$$

•
$$\gamma = 4$$

- Design requirements:
 - SIR $\geq 15 \text{ dB}$

•
$$P_b \le 5\%$$

Example 3 (3)

		Omnidirectional	Sectoring (120°)	Sectoring (60°)
	K	6	2	1
m =	Ν	7	3	3
	SIR [dB]	18.7	16.1	19.1
	#channels/cell	400/7 = 57	400/3 = 133	400/3 = 133
	#sectors	1	3	6
	#channels/sector	57	133/3 = 44	133/6 = 22
	A [Erlangs]/sector	51.55	38.56	17.13
	A [Erlangs]/cell	51.55	38.56×3 ≠ 115.68	$17.13 \times 6 = 102.78$
	#users/cell	18558	41645	37001

Assume that each user makes 2 calls/day and 2 min/call on average \rightarrow 1/360 Erlangs.

This is important.

Make sure that you understand where numbers in this table come from!